

FRAUNHOFER-INSTITUT FÜR BIOMEDIZINISCHE TECHNIK IBMT

- 1 Roll-to-roll printed dots of collagen IV (bar: 100 μm).
- 2 Adhered cells oriented along the printed lines (bar: 200 µm).
- 3 Roll-to-roll printed 10 μm wide lines of collagen IV (bar: 100 μm).

Remark: Fluorescent spots between printed dots and lines are due to the autofluorescence of the polymer foil.

Fraunhofer Institute for Biomedical Engineering IBMT

Prof. Dr. Günter R. Fuhr Prof. Dr. Heiko Zimmermann Ensheimer Strasse 48 66386 St. Ingbert Germany

Contact

Biomedical Microsystems
Dr. Thomas Velten
Telephone +49 6894 980-301
Fax +49 6894 980-152
thomas.velten@ibmt.fraunhofer.de

www.ibmt.fraunhofer.de

MICRO PATTERNED SURFACE FUNCTIONALIZATION BY THE METRE

Description

IBMT has developed a method for functionalizing large-area foils by roll-to-roll printing of protein micro structures. Biocompatible basic inks are available for both flexo printing and rotogravure printing processes and can be employed in a customized lab printing machine available at IBMT. Proteins are added to the basic inks according to customer requirements. On request, surface activation of the polymer foil is possible inline by a corona treatment station.

Roll-to-roll printing is suited for functionalizing large areas within a short time at low costs. In contrast to e. g. spin-coating, our roll-to-roll printing process hardly wastes any (expensive) proteins. Depending on the application, printed protein micro patterns (dots, lines) may have the same effect as a continuous surface coating, while saving costs.

Advantages

- Low equipment costs
- Large-area surface functionalization
- Hardly any waste of proteins
- High throughput (mass production)
- Wide range of micro structures
 (10 μm centimetres)
- Defined arrangement of components and patterns on a foil
 - → further processing in batches

